Snow Gauge

The data are from USDA Forest Service’s snow gauge located in the Central Sierra Nevada mountain range near Soda Springs, California. The study has two variables of interest: snow density and gain which is the gauge measurement. 
The aim of the study is to provide a simple procedure to estimate density for a given value of gain. We provide a scatter plot of density against gain to find any possible relation between density and gain. Then a regression line is provided to figure out the relationship. The underlying assumptions required for regression line are then checked. We are ultimately interested to provide the answer of the question that for a given gain reading, what will be the density of the snow-peak. 
The scatter plot of density against gain is plotted below which provides a strong negative association between density and gain. With an increase in gain, density decreases rapidly.  
[image: ]

A simple statistical regression model is built to estimate mean density at a given gain. The details of the regression model are provided below:
The model is a very good fit to the data as the R2 of the model is 0.8157 and it explains 81.57%variability of the data. Gain is a significant predictor of density as the p-value of the estimated coefficient is less than 1% level of significance. The model is significant for the data and we can use this regression model to predict mean density at a given level of gain.
However, we need a data transformation as the gain values are large and to reduce the variability of the data.


Call:
lm(formula = density ~ gain, data = dat)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.13198 -0.09452 -0.01354  0.09682  0.16495 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.5497239  0.0151243   36.35   <2e-16 ***
gain        -0.0015334  0.0000777  -19.73   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.09769 on 88 degrees of freedom
Multiple R-squared:  0.8157,	Adjusted R-squared:  0.8136 
F-statistic: 389.5 on 1 and 88 DF,  p-value: < 2.2e-16


The data transformation in terms of log is conducted. We now use log of gain to construct the regression model of density against gain. The log of gain is defined as lgain.

Call:
lm(formula = density ~ lgain, data = dat)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.028031 -0.011079 -0.000018  0.011595  0.044911 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.298013   0.006857   189.3   <2e-16 ***
lgain       -0.216203   0.001494  -144.8   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01471 on 88 degrees of freedom
Multiple R-squared:  0.9958,	Adjusted R-squared:  0.9958 
F-statistic: 2.096e+04 on 1 and 88 DF,  p-value: < 2.2e-16

Now we find an excellent fit of the model to the data as the R2 of the model is now 0.9958 and it explains 99.58% variability of the data. Likewise above, gain is a significant predictor of density as the p-value of the estimated coefficient is less than 1% level of significance. With one percent increase in gain, we expect density to decrease by 0.00216 units of density.
The model is significant for the data and we can use this regression model to predict mean density at a given level of gain.
The assumptions that are required for this study are given below:
1) The observations are independent. It is apparent from the study that the observations are independent.
2) Homoscedasticity of residuals or equal variance

[image: ]
The first plot (top-left) shows that at starting the fitted values increases along x increase, the residuals decrease and then increase. This pattern is indicated by the red line, which should be approximately flat if the disturbances are homoscedastic. The plot on the bottom left also checks this, and is approximately flat when the residuals are standardized.
In this case, there is no such definite pattern noticed. So, there is no heteroscedasticity. 

3) No autocorrelation of residuals
Below is the correlelogram of the residuals.
[image: ]
 The very first line (to the left) shows the correlation of residual with itself (at Lag 0), and it will be always 1. If the residuals were not autocorrelated, the correlation from next lag onwards will drop to near zero. Clearly, we do not have such pattern. We have significant correlation upto lag 14. This concludes that the residuals are autocorrelated. 

4) Normality of residuals
The residuals should be normally distributed. The Q-Q plot of the residuals shows that the residuals are normally distributed. 
Therefore, the estimates are not accurate as the residuals violate the assumption of autocorrelation. 
To provide a relationship and prediction, a statistical model is necessary. The mean density can be estimated at a given level of gain by this estimated statistical model.





Crabs

The data set has two variables. One variable is the shell size of the crabs which is a continuous variable and the other variable is whether the shell is clean or not which is a binary variable. 
We have 362 observations on shell size of crabs of both clean shell and unclean shell. Our primary interest is whether there is any difference in shell size when shell is clean or unclean.
The point-biserial correlation coefficient is the correlation measure that we can use to measure the strength of association between a continuous variable and a binary variable. 
The below scatter plot shows a slightly negative slope. However, since our variable shell is measured on a nominal level of (0,1), it is better to display the data in a box plot. The box plot shows that median shell size of clean shell is higher on average than the shell size of unclean shell. 
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The statistical analysis of two independent population t test can be applied to study the difference in shell size. Before analyzing t test, we require to test the equality of variance of the two populations. The equality of variance test (F test) is provided below:  

F test to compare two variances

data:  dat1$size by dat1$shell
F = 0.97771, num df = 160, denom df = 200, p-value =0.8851
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.729754 1.316331
sample estimates:
ratio of variances 
         0.9777051 

The p-value of the F test is 0.8851 which is greater than 1% level of significance. This concludes that the variances of the two populations can be assumed to be equal. Assuming the equality of variances, we perform two independent population t test on the data. The output is provided below:
Two Sample t-test

data:  dat1$size by dat1$shell
t = 5.8328, df = 360, p-value = 1.215e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 4.637563 9.355447
sample estimates:
mean in group 0 mean in group 1 
       149.1099        142.1134 
The p-value of the t test is 0.000 which is less than the 1% level of significance. This concludes that there is significant difference in sell size of crabs when the shell is clean and unclean. The assumption of normality is assumed to for t test. Following are the density and Q-Q plot of the data and these suggest mild deviation from normality is seen.  
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